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A reformative kernel Fisher discriminant analysis
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Abstract

A reformative kernel Fisher discriminant method is proposed, which is directly derived from the naive kernel Fisher
discriminant analysis with superiority in classi1cation e2ciency. In the novel method only a part of training patterns, called
“signi1cant nodes”, are necessary to be adopted in classifying one test pattern. A recursive algorithm for selecting “signi1cant
nodes”, which is the key of the novel method, is presented in detail. The experiment on benchmarks shows that the novel
method is e8ective and much e2cient in classifying.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Kernel Fisher discriminant analysis [1] has attracted much
attention and has been applied in many recognition problems
because it owns conceptual elegance and state-of-the-art per-
formance. The key to kernel Fisher method is to classify
test patterns in some high-dimensional space using kernel
trick. However, it is well-known that kernel Fisher discrim-
inant analysis is based on the theory of reproducing kernels;
as a result, the classi1cation e2ciency of the naive kernel
Fisher discriminant analysis is in verse ratio to the number
of training patterns. Consequently, if the number of training
patterns is large enough, the method may become imprac-
tical. So it is very important to improve the classi1cation
e2ciency of the naive kernel Fisher discriminant analysis
if a suitable approach is available [2,3]. In this paper, it is
supposed that in the high-dimensional space introduced by
kernel methods the Fisher discriminant vector can be well
approximated by some expansion of a part of training pat-
terns. From this supposition, a reformative kernel Fisher
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discriminant analysis is developed, which is directly derived
from the naive kernel Fisher discriminant analysis and di-
rectly based on the Fisher criterion. Moreover, when the re-
formative method classi1es each test pattern it is only neces-
sary to compute the kernel functions between the test pattern
and the “signi1cant nodes”, a few training patterns selected
from the total training patterns. So, in practice, the novel
method will be much more e2cient than the naive kernel
Fisher discriminant analysis in classifying.

2. Kernel Fisher discriminant analysis

Kernel Fisher discriminant analysis is based on a con-
ceptual transformation from input space into a nonlinear
high-dimensional feature space. Let {xi} denote the input
space. Suppose that the high-dimensional feature space is F
and the corresponding nonlinear function is �, i.e. �(xi)∈F .
Consequently in the feature space F Fisher criterion is de-
1ned by

J (w) =
w′S�

b w

w′S�
ww

; (1)

where w is the discriminant vector, and S�
b and S�

w are
between-class scatter matrix and within-class scatter matri-
ces, respectively. If there are two classes, they can be de-
noted by c1 and c2, respectively. The numbers of patterns in
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c1 and c2 are l1 and l2, respectively, meanwhile l1 + l2 = l
is supposed. x1

j ; j =1; 2; : : : ; l1 denotes the jth pattern in c1.
x2
j ; j = 1; 2; : : : ; l2 denotes the jth pattern in c2. If the prior

probabilities of the two classes are equal, then

S�
b = (m�

1 − m�
2 )(m�

1 − m�
2 )′; (2)

S�
w =

∑
i=1;2

∑
j=1;li

(�(xi
j) − m�

i )(�(xi
j) − m�

i )′; (3)

where m�
i =(1=li)

∑
j=1; li

�(xi
j). According to the theory of

reproducing kernels, w will be an expansion of all training
patterns, i.e.

w =
l∑

i=1

�i�(xi): (4)

Substitute k(xi; xj) for dot production �(xi) · �(xj). De1ne
M1; M2 and N as follows:

(Mi)j =
1
li

li∑
k=1

k(xj; x
i
k); j = 1; 2; : : : ; l; (5)

N =
2∑

i=1

Ki(I − Ili )K
′
i ; (6)

where I is the identity, Ili is a li × li matrix and each
element is 1=li; Ki is a l × li matrix, (Kn)i; j = k(xi; xn

j );
i = 1; 2; : : : ; l; j = 1; 2; : : : ; ln; n = 1; 2.

Fisher criterion based on kernel will be expressed by

J (�) =
�′M�
�′N�

; (7)

where � = [�1 : : : �l]′; M = (M1 − M2)(M1 − M2)′ [2].
As a result, the problem for obtaining w is transformed

into one for solving optimal �, which corresponds to the
maximum J . The optimal � will be solved by the eigenequa-
tion

M� = �N�: (8)

So the eigenvector, corresponding to the maximum eigen-
value of Eq. (8), is the optimal �. In fact, for two-class clas-
si1cation the optimal � can be achieved by

� = N−1(M1 − M2): (9)

3. The reformative kernel Fisher discriminant analysis

3.1. A reformative criterion function

In practice, generally N is singular, so � can be solved by
the following equation:

� = (N + �I)−1(M1 − M2); (10)

where � is a positive constant. From the viewpoint of nu-
merical stability, if � is large enough, N +�I will be positive

de1nite and consequently the problem will be more stable.
Now we de1ne Fisher criterion as

J (�) =
�′M�

�′N� + ��′�
=

�′M�
�′(N + �I)�

: (11)

It is provable that

J (�) = (M1 − M2)
′�: (12)

Obviously, the greater (M1 −M2)′� is, the more signi1cant
the corresponding patterns are. So (M1−M2)′� can be taken
as a criterion to select “signi1cant nodes”. It is notable that
although an algorithm based on criterion (11) favors � with
small ‖�‖2 it does not disobey Fisher’s idea for achieving
the maximum ratio of between-class distance to within-class
distance.

3.2. Algorithm for selecting “signi6cant nodes”

Step 1: Selecting the 6rst “signi6cant node”. For each
training pattern xi; i = 1; 2; : : : ; l, 1rst compute its N; M1

and M2 according to Eqs. (5) and (6). Then compute the
corresponding � and J (�) according to Eqs. (10) and (12),
respectively. The pattern corresponding to the maximum
J (�) is taken as the 1rst “signi1cant node”, denoted by x0

1.
Step s: Selecting the sth “signi6cant node”. Suppose s−1

patterns have been selected as “signi1cant nodes”, denoted
by xo

1 ; x
o
2 ; : : : ; x

o
s−1, then selecting the sth “signi1cant node”

will be carried out according to the following algorithm.
It is notable that each pattern x; x∈{xi; i = 1; 2; : : : ; l}

and x 	∈ {x0
j ; j = 1; 2; : : : ; s − 1}, will be considered in

this procedure. When a new pattern x is being considered,
M1; M2; K1; K2 can be formulated as follows:

M1 =

[
M 0

1

a

]
; M2 =

[
M 0

2

b

]
; (13)

K1 =

[
K0

1

k1
new

]
; K2 =

[
K0

2

k2
new

]
; (14)

where M 0
1 ; M 0

2 are the M1; M2 corresponding to the previ-
ous s − 1 “signi1cant nodes”, respectively, and K0

1 ; K0
2 are

the K1; K2 corresponding to the previous s − 1 “signi1cant
nodes”, respectively,

a =
1
l1

l1∑
k=1

k(x; x1
k); b =

1
l2

l2∑
k=1

k(x; x2
k);

kj
new = [k(x; xj

1) k(x; xj
2) : : : k(x; xj

lj
)]; j = 1; 2:

Let

N1 =
∑
i=1;2

Ki(I − Ili )K
′
i + �I; (15)

then N1 can be expressed as

N1 =

[
N 0

1 u

u′ �

]
; (16)
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� =
∑
i=1;2

ki
new(I − Ili )(k

i
new)′ + �; (17)

u =
∑
i=1;2

K0
i (I − Ili )(k

i
new)′; (18)

where N 0
1 is the N1 corresponding to the previous s − 1

“signi1cant nodes”. Because N1 is a symmetric matrix, and
N−1

1 can be obtained by the formulation [4]

N−1
1 =




(N 0
1 )−1 +

1
�

zz′ − 1
�

z

− 1
�

z′
1
�


 ; (19)

where z = (N 0
1 )−1u; � = �− u′z. Furthermore, J (�) can be

calculated by the following:

J (�)=(M 0
1−M 0

2 )′(N 0
1 )−1(M 0

1−M 0
2 )+[y−(a−b)]2=�;

(20)

where y=(M 0
1 −M 0

2 )′z. Because K0
1 ; K0

2 ; M 0
1 ; M 0

2 ; (N 0
1 )−1

and (M 0
1 − M 0

2 )′(N 0
1 )−1(M 0

1 − M 0
2 ) have been obtained in

the procedure for selecting the (s− 1)th “signi1cant node”,
J (�) can be solved recursively and easily based on Eq. (20).
After each pattern x has been considered and the correspond-
ing J (�) has been obtained, the pattern corresponding to the
maximum J (�), denoted by Js, is selected as the sth “sig-
ni1cant node”. Selecting for the “signi1cant node” is not
terminated until |Js − Js−1|¡#, where # is a constant. Sup-
pose the number of the “signi1cant nodes” is r, correspond-
ingly the “signi1cant nodes” are denoted by xo

1 ; x
o
2 ; : : : ; x

o
r , re-

spectively. �, corresponding to the maximum J (�), obtained
in the procedure for selecting the last “signi1cant node” is
taken as the optimal solution for �.

3.3. Classi6cation based on “signi6cant nodes”

After “signi1cant nodes” are selected classi1cation for
test patterns can be carried out based on them. For a test

Table 1
The classi1cation error rates of the kernel Fisher discriminant analysis

Banana B. Cancer Diabetis German Heart Image F. Solar Splice Thyroid Titanic

13:7 ± 0:1 22:7 ± 4:4 22:1 ± 1:9 21:3 ± 2:1 11:5 ± 2:8 9:0 ± 0:5 32:2 ± 1:6 11:0 ± 0:5 1:8 ± 1:1 25:5 ± 0:3

Table 2
The classi1cation results of the reformative kernel Fisher discriminant analysis

Banana B. Cancer Diabetis German Heart Image F. Solar Splice Thyroid Titanic

Error rate 13:3±0:1 24:7 ± 4:1 23:5 ± 1:9 26:2 ± 2:0 10:8±2:6 11:4 ± 0:6 33:3 ± 1:6 13:7 ± 0:4 4:11 ± 1:8 25:4±0:3

“Signi1cant nodes” 62(16%) 32(16%) 20(4%) 24(3%) 27(16%) 60(5%) 15(2%) 62(6%) 23(16%) 3(2%)

pattern xt ; f(xt) can be obtained by

f(xt) =
r∑

i=1

�ik(xt ; x
o
i ): (21)

According to f(xt) classi1cation can be performed. In the
following experiment, the minimum classi1er is exploited.
In other words, if f(xt) is closer to f1; xt will be sorted into
c1, otherwise it will be sorted into c2, where f1 and f2 are
de1ned by

fi =
1
li

li∑
j=1

r∑
k=1

k(xo
k ; x

i
j); i = 1; 2: (22)

4. Experiment

One experiment on 10 benchmark datasets (http://ida.1rst.
gmd.de/∼raetsch/data/) is performed. Hundred partitions are
generated for each dataset (except “Image” and “Splice”
with only 20 partitions) and every partition includes own
training pattern subset and test pattern subset. Gaussian ker-
nel in the form of k(x; y)=exp(−‖x−y‖2=(2'2)) is adopted.
For each dataset '2 is set the variance of the 1rst training
pattern subset. Training is also carried out in the 1rst train-
ing subset, while classi1cation is performed for all the test
pattern subsets. In the experiment � is set 0.001.

Tables 1 and 2 show the classi1cation performance of the
naive kernel Fisher discriminant analysis and the reformative
method on 10 datasets. It is clear that classi1cation error rates
achieved by the reformative method are close to the naive
kernel Fisher discriminant analysis. However, the number
of “signi1cant nodes” selected by the reformative method is
much smaller than the total number of training patterns. The
maximum ratio for “signi1cant nodes” to the total training
patterns is only 16%. In other words, only kernel functions
between a few training patterns and one test pattern are used
for classifying the test pattern in the reformative method.

http://ida.first.gmd.de/~raetsch/data/
http://ida.first.gmd.de/~raetsch/data/
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Consequently, it means that the computational complexity
of classifying is much lower than that of the naive kernel
Fisher discriminant analysis. Consequently, the reformative
method is superior to the naive kernel Fisher discriminant
analysis in classi1cation e2ciency.
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